Aggregator
Statements of Support for Security Best Practices
Explore the significance of statements of support for security best practices in enterprise SSO and CIAM. Learn about MFA, access control, and vendor endorsements.
The post Statements of Support for Security Best Practices appeared first on Security Boulevard.
2 нанометра как объект вожделения. За что воруют в эпоху микроминиатюризации
CVE-2007-2806 | GaliX 2.0 index.php cross site scripting (EDB-30065 / BID-24066)
CVE-2007-3267 | Fuzzylime Forum up to 1.01b low.php fromaction cross site scripting (EDB-30201 / XFDB-35137)
CVE-2007-5567 | Galmeta Galmeta Post 0.11 upload_config.php DDS code injection (EDB-30737 / XFDB-37412)
CVE-2007-2257 | Fully Modded phpBB2 subscp.php phpbb_root_path file inclusion (EDB-29869 / XFDB-33751)
CVE-2007-4942 | Focus-sis Focus Sis 1.0 Focus/SIS FocusPath code injection (EDB-4377 / XFDB-36521)
Taak volbracht voor vlaggenschip Zr.Ms. De Ruyter
取证AI三大能力突破!电子数据取证跨入L3级自动化取证时代
未来已来
过去,执法人员在进行手机取证前,必须手动开启USB调试模式,由于手机品牌众多、机型繁杂、USB接口规格不一,往往需要花大量时间摸索,搜索开启方法、反复点击并逐步配置等;在WiFi取证前,也需要手动连接设备,再执行手机克隆等操作。
现在,解决办法来了!美亚柏科自主研发的智能自动化取证精灵取得跨越式突破,实现USB调试自动开启、WiFi 取证自动化、直连取证自动化三大能力,全面覆盖华为Mate系列、Pura系列以及荣耀全线主流机型,vivo、oppo、小米等手机品牌也在快速适配迭代中。
面对复杂异常场景,设备能通过自动流程优化,稳定完成操作:
·USB调试自动开启:手机取证必备步骤。
·WiFi取证自动化:自动完成WiFi设备连接、手机克隆等流程,省去繁琐人工操作。
·直连取证自动化:USB调试自动开启并在取证OS系统开启直连取证任务,实现即插即取。
这一突破具有里程碑意义,它标志着取证工作从依赖人工的“半自动”模式,跃迁至真正的全流程自动化阶段。基于此,我们将该成果正式定义为L3级自动化取证。就如同汽车领域从L2辅助驾驶迈向L3自动驾驶时代,这不是简单的产品升级,更是行业概念的重塑!
L3级自动化取证,意味着设备能够在大多数场景下,自主完成完整取证流程,将电子数据取证带入一个新的智能化阶段,让公安、司法及相关行业的工作效率实现质的提升。
未来,公司将在电子数据取证领域持续深耕,不断拓宽可适配的机型范围,进一步优化设备稳定性,提升用户交互体验,让自动化成为取证的“新常态”。这不仅是产品自身的进步,更是推动整个行业朝着智能化、规模化方向迈进的关键一步。
产品简介
一款专为基层执法人员打造的全新智能取证设备,集成语音输入、视觉识别与自动化操控等功能,全面简化取证准备流程。支持USB调试自动开启、自动手机取证与语音问答交互,显著提升取证效率与合规性。
CVE-2025-20707 | MediaTek MT8893 geniezone use after free
CVE-2025-20706 | MediaTek MT6899/MT6989/MT6991/MT8676/MT8678 mbrain use after free
CVE-2025-20705 | MediaTek MT8796 monitor_hang use after free
CVE-2025-6507 | h2oai h2o-3 3.47.0.99999 Regular Expression deserialization
CVE-2025-20708 | MediaTek MT8893 NR15/NR16/NR17/NR17R Modem out-of-bounds write
CVE-2025-20704 | MediaTek MT8883 NR17/NR17R Modem out-of-bounds write
CVE-2025-20703 | MediaTek MT8893 NR15/NR16/NR17/NR17R Modem out-of-bounds
CVE-2025-54857 | Seiko SkyBridge BASIC MB-A130 up to 1.5.8 os command injection
«Банк» или «реклама» — теперь абонент сразу увидит, кто ему звонит
KillChainGraph: Researchers test machine learning framework for mapping attacker behavior
A team of researchers from Frondeur Labs, DistributedApps.ai, and OWASP has developed a new machine learning framework designed to help defenders anticipate attacker behavior across the stages of the Cyber Kill Chain. The work explores how machine learning models can forecast adversary techniques and generate structured attack paths. Combining ATT&CK with the kill chain The Cyber Kill Chain, introduced by Lockheed Martin, breaks down attacks into seven stages: reconnaissance, weaponization, delivery, exploitation, installation, command and … More →
The post KillChainGraph: Researchers test machine learning framework for mapping attacker behavior appeared first on Help Net Security.